SI has developed a process to mitigate the negative outcomes of piping examination.One part of that process is Thinning Handbooks, which have resulted in direct savings in excess of $10 Million for one nuclear plant.
Examination of Safety Related Service Water piping is driven by a number of factors, all of which tend to converge on the objective of finding localized thinning prior to the thinning becoming a problem.In other words, examinations are performed to eliminate the risk of a leak and ensure that the wall thickness remains greater than tmin (the minimum required uniform wall thickness).However, the rules, regulations, and economic realities mean that only bad things happen from an exam regardless of what is found.
https://www.structint.com/wp-content/uploads/2021/07/News-View-Volume-47-TRU-Compliance-Expands-into-Physical-Security-How-To-Make-Knowing-A-Good-Thing-Thinning-Handbooks.jpg363668Structural Integrityhttps://www.structint.com/wp-content/uploads/2023/05/logo-name-4-930x191-1.pngStructural Integrity2020-03-03 16:45:142021-07-28 18:27:44News & View, Volume 47 | How To Make Knowing A Good Thing: Thinning Handbooks
This service coincides with the upcoming publication of the Structural Design for Physical Security Manual of Practice by the American Society of Civil Engineers, with TRU Compliance Director Andy Coughlin as coauthor.
TRU Compliance’s testing and certification services is expanding into the dynamic field of Physical Security. This service coincides with the upcoming publication of the Structural Design for Physical Security Manual of Practice by the American Society of Civil Engineers, with TRU Compliance Director Andy Coughlin as coauthor.TRU’s practice in this arena includes Blast, Ballistics, Vehicle Impact and Forced Entry services. This is possible through TRU’s partnerships with leading test laboratories such as Oregon Ballistics Labs, Stone-OBL, BakerRisk, Calspan, and others.Physical Security certification by TRU is accredited by the International Accreditation Service and compliments TRU’s accredited Seismic and Wind Certifications.
By: Ben Ruchte, Steve Gressler, and Clark McDonald
Properly inspecting plant piping and components for service damage is an integral part of proper asset management.High energy systems constructed in accordance with ASME codes require appropriate inspections that are based on established industry practices, such as implementation of complimentary and non-destructive examination (NDE) methods that are best suited for detecting the types of damage expected within the system.In any instance where NDE is used to target service damage, it is desirable to perform high quality inspections while at the same time optimizing inspection efficiency in light of the need to return the unit to service.This concept is universally applicable to high energy piping, tubing, headers, valves, turbines, and various other power and industrial systems and components.
https://www.structint.com/wp-content/uploads/2021/07/News-View-Volume-47-Surface-Preparation-–-A-Pivotal-Step-in-the-Inspection-Process.jpg363668Structural Integrityhttps://www.structint.com/wp-content/uploads/2023/05/logo-name-4-930x191-1.pngStructural Integrity2020-03-03 16:19:102021-12-15 18:54:49News & View, Volume 47 | Surface Preparation – A Pivotal Step in the Inspection Process
Has the heat conversion efficiency of your heat exchangers degraded? Is the flow of your cooling water system being impeded? Are you repairing or replacing equipment due to localized corrosion causing through-wall failure? Inefficiencies and equipment failures are big problems in any industrial process, but the cause of the problem may be smaller than you think. You might have a biofilm problem. Bacteria floating in a cooling or process water can become colonies on wetted surfaces and can form robust biofilms over remarkably short times. Biofilms are collections of living and dead cells that are enclosed in an extracellular polymeric substance matrix secreted by living organisms. The unchecked growth of biofilms can significantly decrease thermal efficiency on surfaces as the biofilm acts as an insulating layer. Highly localized chemical effects can also be created that lead to microbiologically influenced corrosion (MIC).
A new program to help pipeline operators implement the Material Verification requirements in recently released pipeline regulation (Mega Rule)
On October 1, 2019, the Pipeline and Hazardous Materials Safety Administration (PHMSA) published the long-awaited Mega-Rule(Part 1).One of the major new requirements identified in these amendments is when missing traceable, verifiable, and complete records, operators must implement a Material Verification (MV) (§192.607) program.MV requires operators of natural gas transmission pipelines, to develop and implement procedures to verify the material properties and attributes of their pipeline system.Included in the new regulation for MV are:
Develop procedures for conducting destructive and non-destructive testing
Define population groupings and implement sampling programs
Implement and document laboratory testing
Complete in situ and non-destructive evaluations (NDE)
Expand sampling if inconsistent results based on NDE and laboratory testing
Document program results and preserve for the life of the pipeline asset
The Pegasus code is a culmination of nuclear fuel behavior knowledge and experience that spans a period of over five decades. It is a total fuel-cycle simulation of fuel response from initial insertion in reactor to deposition in permanent storage. The goal of Pegasus is to treat, with equal fidelity, the modeling of fuel behavior during the active fuel cycle and the back-end cycle of spent-fuel storage and transportation in a single, self-consistent, and highly cost-effective analysis approach. In the active part of the fuel cycle, Pegasus’s superior three-dimensional thermo-mechanics, coupled with validated nuclear and material behavior models, and robust fuel-cladding interface treatment make it a high-fidelity predictor of fuel-rod response during flexible power operations and operational transients.
It is well known that conventional coal-fired utility boilers are cycling more today than they ever have.As these units have shifted to more of an ‘on-call’ demand they experience many more cycles (start-ups and shutdowns, and/or significant load swings) making other damage mechanisms such as fatigue or other related mechanisms a concern.
The most recent short-term energy outlook provided by the U.S. Energy Information Administration (EIA) indicates the share of electricity generation from coal will average 25% in 2019 and 23% in 2020, down from 27% in 2018.While the industry shifts towards new construction of flexible operating units, some of the safety issues that have been prevalent in the past are fading from memory.The inherent risksof aging seam-welded failures and waterwall tube cold-side corrosion fatigue failures are a case in point. It is well known that conventional coal-fired utility boilers are cycling more today than they ever have.As these units have shifted to more of an ‘on-call’ demand they experience many more cycles (start-ups and shutdowns, and/or significant load swings) making other damage mechanisms such as fatigue or other related mechanisms a concern.The following case study highlights this point by investigating a cold-side waterwall failure that experienced Corrosion Fatigue.While this failure did not lead to any injuries, it must be stressed that the potential for injuries is significant if the failure occurs on the cold-side of the tubes (towards the furnace wall).
By: Scott Riccardella, Bruce Paskett, and Andy Jensen
On October 1, 2019 the Pipeline and Hazardous Materials Safety Administration (PHMSA) published amendments to 49 CFR Parts 191 and 192 in the Federal Register issuing Part 1 of the Gas Transmission Mega-Rule1.This new regulation is commonly referred to as the Mega-Rule, as it represents the most significant regulatory impact on gas transmission pipelines since the original Gas Transmission Integrity Management Program (TIMP) Regulation was issued in 2003.
General Overview As a result of numerous transmission pipeline accidents in the late 1990’s, the congressional Pipeline Safety Improvement Act of 2002 required operators of natural gas transmission lines to create TIMP Plans to identify transmission lines in High Consequence Areas (HCAs), conduct risk assessments and manage the integrity of covered segments in HCAsby conducting periodic integrity assessments. In 2010 through 2012, multiple incidents (Deep Water Horizon, San Bruno, California, Marshall, Michigan, Sissonville, WV) created a renewed focus on pipeline safety in Congress.
https://www.structint.com/wp-content/uploads/2021/07/News-View-Volume-47-Release-of-the-First-Safety-of-Gas-Transmission-Pipeline-Regulation-Mega-Rule.jpg363668Structural Integrityhttps://www.structint.com/wp-content/uploads/2023/05/logo-name-4-930x191-1.pngStructural Integrity2020-03-03 15:40:292021-07-20 15:51:45News & Views, Volume 47 | Release of the First Safety of Gas Transmission Pipeline Regulation Mega-Rule
Superheater/reheater fireside corrosion is also known as coal ash corrosion in coal fired units.
MECHANISM Coal ash corrosion generally occurs as the result of the formation of low melting point, liquid phase, alkali-iron trisulfates. During coal combustion, minerals in the coal are exposed to high temperatures, causing release of volatile alkali compounds and sulfur oxides. Coal-ash corrosion occurs when flyash deposits on metal surfaces in the temperature range of 1025 to 1200oF. With time, the volatile alkali compounds and sulfur compounds condense on the flyash and react with it to form complex alkali sulfates such as K3Fe(SO4)3 and Na3Fe(SO4)3 at the metal/deposit interface, which are low melting point compounds. The molten slag fluxes the protective iron oxide covering the tube, exposing the metal beneath to accelerated oxidation.
San Jose, CA, February 4, 2020 – Structural Integrity Associates, Inc. (SI) announced today the appointment of Mark W. Marano as President and Chief Executive Officer, effective February 10, 2020. Marano succeeds Laney Bisbee following his retirement in late 2019.
Marano joins SI following a brief retirement from Westinghouse Electric Company, where he previously was Chief Operating Officer where he oversaw core global products and services and played a key role in the company’s emergence from bankruptcy. Previously, Marano served as Westinghouse President, Americas and EMEA sales regions for four years, driving strategic revenue growth in a challenging nuclear market.
Marano’s career spans over 35 years in provider and supplier sides of the power generation industry. Prior to Westinghouse, he held executive leadership positions with AREVA NP (currently Framatome) and GE Hitachi Nuclear Energy. Marano also held several senior leadership roles at American Electric Power (AEP), a power utility company with electric transmission/distribution networks as well as nuclear, coal, natural gas and hydro generation assets. There he provided financial and commercial leadership, plus for five years was CEO of AEP’s subsidiary, Numanco, a provider of staff augmentation services.
Barry Waitte, Chairman of the Board of SI, noted, “Mark brings tremendous experience to SI. While his energy industry experience is an obvious fit, it’s how he achieved his success that made him the right choice – a combination of exceptional business acumen and the ability to drive employee engagement and buy-in. His business development experience will also provide a basis for creating a platform for growth, not only in our core markets but also as we deliver our capabilities into new markets in the future.”
Marano stated, “I look forward to working with the talented SI staff and our industry partners to help deliver for our clients, and to get better in everything that we do. This is a humbling and exciting challenge for me, as SI holds a special place in the market as a highly respected technical consulting firm.”
Marano has a Bachelor of Science in business administration from State University of New York at Oswego. He will be located in SI’s Charlotte, North Carolina office.
https://www.structint.com/wp-content/uploads/2021/06/Mark-Marano-CEO-Announcement-Post.jpg363668Structural Integrityhttps://www.structint.com/wp-content/uploads/2023/05/logo-name-4-930x191-1.pngStructural Integrity2020-02-04 16:43:542021-07-12 19:37:24SI appoints Mark W. Marano as President and Chief Executive Officer
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
Google Analytics Cookies
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
Other external services
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
Other cookies
The following cookies are also needed - You can choose if you want to allow them:
Privacy Policy
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.