Applications of Probabilistic Fracture Mechanics to Boiling Water Reactors

Basic Principles & Potential Applications of Probabilistic Techniques

Deterministic fracture mechanics analysis often involves computing critical crack size or remaining life of a component subjected to cyclic or steady state stresses. Since many of the inputs needed to perform the analysis have considerable scatter, conservative input values are employed to estimate critical crack size or remaining life. The final results that are obtained using such methods are necessarily conservative and sometimes overly conservative.

Probabilistic Fracture Mechanics (PFM) overcomes this limitation by considering the variables with scatter as distributed random variables. Rather than pass/fail, the result is a probability of certain events occurring; for example, the probability of the critical crack size being reached.

As plants continue to age and units consider long-term operation, opportunities to apply probabilistic techniques are increasingly promising, especially in light of recent regulatory acceptance.

What you will learn:
  • Basic principles of Probabilistic Techniques, with focus on Probabilistic Fracture Mechanics
  • Potential applications of probabilistic techniques to address BWR material degradation issues
Presenter Bio
Dilip Dedhia

Senior Associate

Dr. Dedhia’s areas of expertise include fracture mechanics, both deterministic and probabilistic, statistical data analysis, development of engineering software and providing training. Since joining SI in 2007, Dr. Dedhia has been involved in fracture mechanics analysis and the development of pc-CRACK software. His current work includes the development of beyond-PRAISE, a PFM software for nuclear piping. He is also a key contributor to the NRC-EPRI xLPR project. Dr. Dedhia has developed statistically based inspection plans, databases for pressure vessel fracture toughness data and statistical methodology for large volume


Contact Form