SI FatiguePRO for Hydrogen Fueling Station Assets - Vessel Life Cycle Management

News & Views, Volume 50 | SI FatiguePRO for Hydrogen Fueling Station Assets

VESSEL LIFE CYCLE MANAGEMENT

By:  Erick Ritter and Daniel Peters

SI FatiguePRO for Hydrogen Fueling Station Assets - Vessel Life Cycle ManagementInitial introduction of many of the hydrogen fueling stations to support this rapidly growing demand were installed around 2010. There were many designs of cylinders developed and installed at that time, many with known limitations on the life of the equipment due to the high pressures involved and cyclic fatigue crack growth issues due to hydrogen embrittlement.  The designs were often kept relatively simple to lower their costs often with little or no considerations for in-service inspection or potential end of life considerations.  Others involved innovative designs with reinforcing wrapping to try to enhance the life of the vessels, but by doing so, these designs limited the access to the main cylinder wall for in-service inspection. 

Many of these vessels are now reaching or passing the design life established by ASME.  This is resulting in problems for operators of this equipment as some jurisdictions will not allow the vessels to operate beyond the design life without inspection or re-rating of the vessels to extend the fatigue life.  SI’s FatiguePRO is a commercial software solution which has been addressing this exact concern for over 25 years.

READ MORE

News & View, Volume 46 | Identifying Failure Mechanisms of Typical I-Section Floodwalls

News & Views, Volume 46 | Identifying Failure Mechanisms of Typical I-Section Floodwalls

By: Eric Kjolsing and Dan Parker

News & View, Volume 46 | Identifying Failure Mechanisms of Typical I-Section FloodwallsIn 2018, Structural Integrity Associates, Inc. (SI) supported the United States Army Corp of Engineers (USACE) in the structural assessment of the concrete-to-steel connection in typical I-Section flood walls. A representative flood wall section is shown in Figure 1. This effort was part of a broader scope of work in which the USACE is revising their guidance for the design of flood and retaining walls, EM 1110-2-6066.  The purpose of the structural assessment was to better understand the mechanics of load transfer from the reinforced concrete section to the embedded sheet pile. Three-dimensional finite element models of the connection were developed employing non-linear constitutive properties for the concrete, structural steel and reinforcement to achieve this goal.  A total of nine different I-Wall configurations with varying wall geometry, sheet pile embedment depth, and connection details were analyzed.  Hydrostatic load was applied incrementally to simulate the actual load distribution due to a rising water level. 

READ MORE

News & View, Volume 46 | Adding Value Through Test Informed Modeling- Hydro Structures

News & Views, Volume 46 | Adding Value Through Test Informed Modeling: Hydro Structures

By: Eric Kjolsing and Dan Parker

News & View, Volume 46 | Adding Value Through Test Informed Modeling- Hydro StructuresIn 2018, Structural Integrity Associates (SI) supported a utility in the structural assessment of a submerged concrete intake tower.  The tower is nearly a century old and was investigated as part of the utility’s periodic maintenance program. 

The assessment required the generation of an analysis model that accounted for both the structure and the surrounding water.  When accounting for fluid effects, a typical analysis approach is to develop a fluid-structure interaction (FSI) model that explicitly accounts for the interaction between the surrounding water and concrete tower.  However, this modeling approach is expensive both in terms of (a) cost, due to the increased effort needed in generating the model and (b) schedule, due to the increased analysis run time.  In lieu of developing an FSI model, SI implemented an alternative numerical approach to model the effects of the water and justified the approach through physical testing of the in-situ structure.

READ MORE