Structural Integrity Associates | Wireless Sensor Node Featured Image

High Energy Piping Monitoring

High Energy Piping Monitoring

SI moves beyond the pilot application of a High Energy Piping monitoring program designed to reduce operational risk and optimize maintenance activities.

Structural Integrity Associates | Wireless Sensor Node 6.17ESI has successfully implemented the initial application of an integrated monitoring solution that provides insight into damage evolution and operational risk using real-time data and automated engineering intelligence. This solution will assist in the optimization of maintenance activities and downtime, helping utilities get the most out of their O&M budgets.  “This is a decisive step toward a more modern asset management approach that will lower O&M cost for our clients,” said Steve Gressler, Vice President, SI Energy Services Group, a division of Structural Integrity Associates, Inc. (SI) focused on power plant asset integrity.

Informed by decades of material performance knowledge, the SI team has refined a proprietary risk-ranking method to optimize sensor placement and deliver a high-value monitoring platform supported by the PlantTrack™ asset data management platform.  The integration of monitoring information into the platform further enhances equipment asset integrity data to simplify stakeholder decision making.   The SI solution incorporates various sensors working on a distributed wireless network to feed real-time data to SI’s state-of-the-art algorithms and is also capable of integrating with existing plant data historians to pull in other valuable operational data. The outcome is a cost-effective damage monitoring approach to focus resources and the timing of comprehensive field inspections.

“The architecture enables asset managers to obtain real-time feedback, alerts, and trends that clearly link actual operating conditions to the lifecycle of critical components.,” said Jason Van Velsor, Director of Integrated Monitoring Technology at SI.

“We have supported clients with asset integrity insights for decades and now offer enhanced monitoring technology that will help automate risk management for high energy piping and help obtain the most value out of field inspection and other maintenance activities during outages.”

Unique Features of the SI Solution include:

  • Design and application of a monitoring program that focuses on safety and reliability and is consistent with guidance contained in the ASME B31.1 regulatory code.
  • Expert assessment (or Gap Analysis) to optimize monitoring including health checkups to validate optimum monitoring for plant operation.
  • Decades of material analysis insights as algorithms to expertly inform decision making.
  • Customized automated alerts to notify operators of abnormal or undesirable operating conditions affecting the life of high-energy components.

Contact Steve or Jason to learn more (info@structint.com)

News and Views Volume 49, Attemperator Monitoring with Wireless Sensors 02

Read Our Related News and Views Story

News and Views Volume 49, Attemperator Monitoring with Wireless Sensors

SI Presents at PRCI AGA & ASME

Pipeline Integrity Activity and Plans for 2022

Authors: Scott Riccardella and Andy Jensen

2021 marked another successful year for the Structural Integrity (SI) Oil & Gas team with several exciting pipeline integrity projects, industry presentations, training events and research programs.  Some of the key highlights include:

  • Continued regulatory consulting support of new pipeline safety regulation (known as Mega-Rule 1 or RIN 1) for nearly all our gas transmission pipeline clients.
  • Commencement of a systemwide pipeline integrity project to evaluate the impact to pipeline safety and reliability from blending hydrogen with natural gas (at various blend levels) for one of the largest U.S. gas pipeline companies.
  • Several industry presentations and training seminars on fracture mechanics evaluation of crack and crack-like defects in support of Predicted Failure Pressure (PFP) Analysis and Engineering Critical Assessments (ECA).
  • Completion of a PRCI study on state-of-the-art technology and a technology benchmark evaluation of X-Ray Computed Tomography to characterize Stress Corrosion Cracking (SCC) on full circumferential samples.
  • Development of a Neural Network algorithm and application of Probabilistic Fracture Mechanics to provide insight on the risk of SCC for a large interstate natural gas pipeline operator.
  • Development of an alternative sampling program for Material Verification when using In-Line Inspection tools including development of regulatory submittals.

2022 is also shaping up to be a similarly busy and exciting year.  Below are some of the events, conferences and presentations SI has currently planned (most of which represent ongoing or recently completed projects):

  • At the PRCI Research Exchange on March 8th in Orlando, FL, SI is presenting on two recent projects:

Insights in the Evaluation of Selective Seam Weld Corrosion

This paper will review a statistical analysis of ERW Fracture Toughness and specific challenges in evaluating Selective Seam Weld Corrosion (SSWC).  It also reviews the results of an engineering critical assessment performed on a pipeline system in which several SSWC defects were identified. Fracture Toughness Testing and Finite Element Modeling were performed to develop insights that were used to support Predicted Failure Pressure analysis and subsequent prioritization and remediation activities.

Title: Evaluation of X-Ray Computed Tomography (XRCT) for Pipeline Reference Sample Characterization

This presentation will review the feasibility of utilizing XRCT for nondestructively characterizing full-circumference pipeline reference samples for subsequent qualification and performance improvement of inline inspection and in-the-ditch nondestructive evaluation technologies, procedures, and personnel. This presentation will cover the state-of-the-art in XRCT, reviewing theoretical and practical concepts, as well as empirical performance data, that were evaluated and analyzed to determine the feasibility of using XRCT for this application.

  • SI has two papers that will be presented at the American Gas Association – Operations Conference the week of May 2nd in New Orleans, LA:

Alternative MV Sampling Program

SI will present technical justification in support of PHMSA notification with regards to the following:

  • Alternative sampling for Material Verification Program (per §192.607).
  • Expanded MV Sampling Program that will achieve a minimum 95% confidence level when material inconsistencies are identified.

A Framework for Evaluating Hydrogen Blending in Natural Gas Transmission Pipelines

Operators are establishing programs to blend hydrogen with natural gas.  Structural Integrity (SI) is supporting a local distribution company to ensure safe and reliable blending and transportation in existing pipeline infrastructure.  SI will present a reliability framework to identify pipelines that are best suited at different H2 blend levels.

  • SI will present at the 2022 ASME – International Pipeline Conference on the following topic:

Probabilistic Analysis Applied to the Risk of SCC Failure

This paper will discuss a model developed and applied to evaluate the probability of Stress Corrosion Cracking (SCC) failure in a large gas pipeline system spanning approximately 5,600 miles.  A machine learning algorithm (neural network) was applied to the system, which has experienced over 500 prior instances of SCC.  Subject matter experts were interviewed to help identify key system factors that contributed to the prevalence of SCC and these factors were incorporated in the neural network algorithm. Key factors such as coating type, vintage, operating stress as a percentage of SMYS, distance to compressor station, and seam type were evaluated in the model for correlation with SCC occurrence.  A Bayesian analysis was applied to ensure the model aligned with the prevalence of SCC.  A Probabilistic Fracture Mechanics (PFM) model was then applied to relate the probability of SCC existing to the probability of rupture.

Alumni Achievement Award

Structural Integrity’s Own HonoredGordon NACE 2021 | Corrosion in the Nuclear Power Industry” for ASM Handbook

Awarded to an alumnus/a for exceptional accomplishment and leadership in the nominee’s professional or vocational field, which brings distinction to themselves and honor to the university. The contribution(s) need not be publicly renowned but should represent important creative effort or accomplishment with significant impact and value.

Barry Gordon is one of the country’s leading experts in corrosion and materials issues in the nuclear power industry.  Upon completing his undergraduate and graduate degree in metallurgy and materials science, he began his career with Westinghouse Electric’s Bettis Atomic Power Laboratory before joining GE Nuclear Energy in San Jose. Currently, Barry is an associate with Structural Integrity Associates, Inc. His professional accomplishments include four patents, more than 85 technical papers and reports, a PE in Corrosion Engineering and a Corrosion Society Fellow. He has served as an expert witness before the Advisory Committee on Reactor Safeguards and Atomic Safety Licensing Board. He also chaired and co-authored “Corrosion in the Nuclear Power Industry” for ASM Handbook, Volume 13C.

Active outside of his professional pursuits, Barry was the president of the Los Gatos Bicycle Racing Club, principal timpanist with the Saratoga Symphony. Barry’s relationship with his alma mater includes supporting two scholarships at CMU, serving as the San Jose chairperson of the CMU Admission Council and being an active member of the Andrew Carnegie Society and a lifetime member of the Order of the May.

Materials Laboratory Case Study #6 | Manufacturing – Supply Chain Upsets News

Manufacturing Supply Chain Upsets

MATERIALS LABORATORY CASE STUDY 6

THE PROBLEM
A supplier of electromagnetic interference (EMI) components noticed that one of their manufacturer’s components was not performing as well as similar components had previously.  The supplier had several theories on the make-up of the component and asked SI to investigate and confirm the material constituents as well as their distribution across the thickness.

THE SOLUTION
A small, coiled metallic sample, representative of the latest batch of material received from the manufacturer, was brought to SI’s Materials Laboratory for analysis. The goal of the analysis was to identify the elemental constituents present to help assess composition and also the distribution of the elements through the thickness. The sample was cross-sectioned and examined and documented in a scanning electron microscope (SEM) as shown in Figure 1. Using backscattered electrons (which help distinguish compositional differences) it was clear that the surfaces had a unique composition (dark grey) when compared to the base substrate (light grey). 

An elemental map of the cross-section was captured using energy dispersive X-ray spectroscopy (EDS) to identify the elements present across the thickness. The elemental map is provided in Figure 2 and the EDS analysis results are provided in Table 1. The sample was confirmed to comprise mostly of titanium and aluminum, which was expected, but was found to be titanium substrate with cladding of aluminum and silver on the surfaces .

Utilizing this information the supplier was able to engage with the manufacturer to help ensure that the material was being manufactured in a way suitable for the given end-use.

Figure 1. As received image of the metallic component and overall micrograph of the component cross-section red arrows show the cross-section location | Manufacturing – Supply Chain Upsets

Figure 1. As received image of the metallic component and overall micrograph of the component cross-section red arrows show the cross-section location

Figure 2. Maps showing elemental distribution through the component cross section | Manufacturing – Supply Chain Upsets

Figure 2. Maps showing elemental distribution through the component cross section

Element Surface A Base Substrate Surface B
Carbon 10.2 7.2
Oxygen 1.2 1.6
Sodium 0.7 0.7
Magnesium 0.8 1.1
Aluminum 76.5 0.5 81.8
Silicon 0.3 0.5 0.4
Calcium 0.2 0.3
Titanium 8.4 98.7 4.9
Iron 0.1 0.1 0.5
Silver 1.8 1.5

Elemental mapping is based on compiling extremely specific elemental composition data across an area of a sample. This is typically done in an SEM using EDS analysis. A high resolution image of the area of interest is collected along with the EDS data, and the two are correlated.

[1] The sample was prepared in a carbon-based mounting medium for use in the SEM, so much of the carbon is from sample preparation.

Download a Copy Here


RELATED MATERIALS

Case Studies


News & Views

Materials Laboratory Case Study #5 | Process Upsets – Condition Analysis

Process Upsets – Condition Analysis

MATERIALS LABORATORY CASE STUDY 5

THE PROBLEM
A filter was removed from a stator cooling system after pressure differential sensors indicated it may be blocked. The filter was submitted to SI’s Materials Laboratory for analysis to help identify the material blocking it.

Figure 1. The filter shown in the as-received condition| Process Upsets – Condition Analysis
Figure 1. The filter shown in the as-received condition

Figure 2. The yellow color is the original appearance of the filter | Process Upsets – Condition Analysis
Figure 2. The yellow color is the original appearance of the filter

THE SOLUTION
The filter was visually examined and documented in the as-received condition as shown in Figure 1. The submitted sample had a perforated plastic shell that covered an inner filter. The outer plastic was removed to provide access to the filter underneath. Figure 2 shows close images of the filter, which was yellowish-white with much of its surface covered in gray colored debris/deposit.

Figure 3. SEM images of material removed directly from the filter (left) and particles from the evaporated MEK (right) B | Process Upsets – Condition Analysis

Figure 3. SEM images of material removed directly from the filter (left) and particles from the evaporated MEK (right) B

A portion of the filter was scraped to remove the deposits. Another portion of the filter was removed and soaked in Methyl Ethyl Ketone (MEK) to remove the debris present on the filter. The solvent evaporated and the remaining particles were collected. Both samples were analyzed in a scanning electron microscope using energy dispersive X-ray Spectroscopy (EDS) to identify the elements present. The results are provided in Table 1. The results indicate that the filter debris was primarily copper oxide. Plant personnel reported that copper contamination could be occurring in the system, so these findings appeared to be consistent with plant information. With their suspicions confirmed, plant personnel were able to move forward with mitigation steps for keeping the filters from becoming blocked.

Element Material Removed from Filer Particles from MEK Wash
Carbon 4.9 ND
Oxygen 13.4 18.5
Aluminum 0.2 1.3
Silicon 0.4 4.2
Sulfur 0.1 0.3
Chlorine 0.1 0.1
Chromium 0.3 1.6
Iron 0.4 4.0
Nickel ND 0.4
Copper 79.7 68.4
Tin 0.4 1.3

Table 1. Filter Material EDS Analysis Results (wt.%)

Download a Copy Here


RELATED MATERIALS

Case Studies


News & Views

Materials Laboratory Solutions Case Study 4|Infrastructure Upgrades – Materials Analysis

Infrastructure Upgrades – Materials Analysis

MATERIALS LABORATORY CASE STUDY 4

THE PROBLEM
Structural Integrity received a section of an original star member from one of Austin’s Moonlight Towers (Figure 1). The material was suspected to be a ductile or malleable cast iron and the company refurbishing the towers needed to determine a suitable replacement material. SI was asked to perform materials testing on the sample to determine its chemical composition, measure its tensile strength, and evaluate the microstructure to determine the material type.

Figure 1. The star member shown in the as-received condition A | Infrastructure Upgrades – Materials Analysis

Figure 1. The star member shown in the as-received condition A

THE SOLUTION
A portion of the star member was submitted for tensile testing and quantitative chemical analysis. Based on the compositional analysis, and particularly the carbon content, the star member is a low carbon steel and not a cast iron. The composition is consistent with UNS G10050 or ASTM A29 Grade 1005. The material was found to have a tensile strength of about 50 ksi and a yield strength of about 30 ksi.

A cross-sectional sample from the star member was prepared for evaluation using standard laboratory techniques. The prepared sample was examined using a metallurgical microscope for evaluation of the microstructure, which is shown in Figure 2. The microstructure consisted of perlite, nonmetallic inclusions, and casting voids/flaws in a ferrite matrix. The microstructure is consistent with a low carbon steel and is not indicative of a ductile or malleable cast iron. The microstructure also showed significant deformation, presumably from forming the star shape (Figure 3). It is not clear if the casting voids/flaws present in the material indicate the material was originally cast and then formed, or if they are just indicative of the quality of the material at the time of manufacture (i.e., the component is not a casting).

With the information from this analysis, the company performing the refurbishment was able to select a suitable material to replace the old, original Moonlight Tower star members.

Figure 2. The typical star member microstructure A | Infrastructure Upgrades – Materials Analysis

Figure 2. The typical star member microstructure A

Figure 3. Deformation in the microstructure 2 | Infrastructure Upgrades – Materials Analysis

Figure 3. Deformation in the microstructure

MOONLIGHT TOWERS
The moonlight towers in Austin, Texas, are the only known surviving moonlight towers in the world. They are 165 feet (50 m) tall and have a 15-foot (4.6 m) foundation. A single tower originally cast light from six carbon arc lamps, illuminating a 1,500-foot-radius (460 m) circle brightly enough to read a watch. In 1894, the City of Austin purchased 31 used towers from Detroit. They were manufactured in Indiana by Fort Wayne Electric Company and assembled onsite. When first erected, the towers were connected to electric generators at the Austin Dam, completed in 1893 on the site of present-day Tom Miller Dam. In the 1920s their original carbon-arc lamps, which were exceedingly bright but time-consuming to maintain, were replaced by incandescent lamps, which gave way in turn to mercury vapor lamps in the 1930s. The mercury vapor lamps were controlled by a switch at each tower’s base. During World War II, a central switch was installed, allowing citywide blackouts in case of air raids. (source: Wikipedia)

Download a Copy Here


RELATED MATERIALS

Case Studies


News & Views

Materials Laboratory Case Study #3 | Manufacturer Infrastructure Upgrades – Material Verification News

Infrastructure Upgrades – Material Verification

MATERIALS LABORATORY CASE STUDY 3

THE PROBLEM
Structural Integrity received several sections of core reinforcing steel from a client performing work at a local university gymnasium (Figure 1). SI’s client needs to have an understanding of the material tensile strength in order to obtain the appropriate replacement material.

THE SOLUTION
Cross-sections were removed from each of the five samples and prepared for hardness testing. The hardness testing was performed as follows:

  • Shimadzu Microhardness Tester (HMV-2) –1.961 N load
  • Unit calibrated with a 206 Vickers (HV) sample block
  • Five readings were made on each sample

The five hardness readings from each sample were averaged and used to estimate the approximate UTS, and the material verification results are provided below.

Figure 1. The core reinforcing steel samples in the as-received condition | Infrastructure Upgrades – Material Verification

Figure 1. The core reinforcing steel samples in the as-received condition

Sample ID

Average Hardness (HV)

Approximate UTS (ksi)

C1-1

144.2

69

C1-2

147.6

70

C2-1

192.2

89

C2-2

198.6

92

C2-3

169.6

79

HARDENESS VS. TENSILE STRENGTH
Hardness is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion, while ultimate tensile strength is the maximum stress that a material can withstand while being stretched or pulled before breaking. Because hardness can often be measured much more readily than tensile strength, it is convenient to use hardness to estimate tensile strength. Hardness correlates linearly to ultimate tensile strength through the empirical (although theoretically explained) equation H=UTS/k. Tensile strength estimates based on hardness should be used for guidance only and should not be used as set reference values. Some material conditions, especially cold work, can change the relationship between the tensile strength and hardness profoundly.

Download a Copy Here


RELATED MATERIALS

Case Studies


News & Views

Materials Laboratory Case Study #2 | Manufacturing – Process Upsets News

Manufacturing Supply Chain Upsets

MATERIALS LABORATORY CASE STUDY 2

THE PROBLEM
A manufacturer noticed recent material provided by a supplier was not performing as well as what had been provided previously, and asked SI’s Materials Laboratory to investigate.

THE SOLUTION
Two pieces of stock material were submitted for analysis (Figure 1). The sample marked as F was the most recent material supplied to a manufacturer and the unmarked sample was the material that had been previously supplied. The newer material was not performing as expected and SI was asked to compare the two samples to identify any differences.

Figure 1. The submitted samples of material

Figure 1. The submitted samples of material

Cross sections were removed from both samples and prepared for metallographic examination. The microstructures from each are shown in Figure 2. The newer material (sample marked “F”) had a microstructure consisting of pearlite in a ferrite matrix. The previously manufacturer supplied material had a microstructure consisting of Widmanstätten ferrite and bainite. Hardness measurements were made on each prepared sample. The F sample had an average hardness of 66.7 Rockwell B and the unmarked sample had an average hardness of 90 Rockwell B. The measured hardness values were consistent with the observed microstructures.

The pearlitic microstructure and lower hardness value indicate that the newer material would have a lower tensile strength than the older material, which was likely the reason it was not performing as expected in its final application. Armed with this information the manufacturer has the information necessary to resolve the issue with the supplier.

Figure 2. The typical microstructures from the marked as F Left and the unmarked sample Right

Figure 2. The typical microstructures from the marked sample (left) and the unmarked sample (right)

TEST METHOD DETAIL
Metallographic examination involves mounting the cross-section, then grinding, polishing and etching. In this case, the carbon steel material was etched with a 2% Nital solution. The prepared sample was examined using an optical metallurgical microscope for examination at magnifications up to 1000X. The images shown were originally taken at 500X.

Download a Copy Here


RELATED MATERIALS

Case Studies


News & Views