News & Views, Volume 49 | Rapid Assessment of Boiler Tubes Using Guided Wave Testing

News & Views, Volume 49 | Rapid Assessment of Boiler Tubes Using Guided Wave Testing

News & Views, Volume 49 | Rapid Assessment of Boiler Tubes Using Guided Wave TestingBy:  Jason Ven Velsor, Roger Royer, and Ben Ruchte

Tubing in conventional boilers and heat-recovery steam generators (HRSGs) can be subject to various damage mechanisms.  Under-deposit corrosion (UDC) mechanisms have wreaked havoc on conventional units for the past 40-50 years and have similarly worked their way into the more prevalent combined cycle facilities that employ HRSGs.  Water chemistry, various operational transients, extended outage periods, etc. all play a detrimental role with regards to damage development (UDC, flow-accelerated corrosion, pitting, etc.).

READ MORE

News & View, Volume 48 | SI Field Service Quality and Efficiency Solutions

News & Views, Volume 48 | SI Field Service Quality and Efficiency Solutions

By:  Robert Chambers and Trey RippyNews & View, Volume 48 | SI Field Service Quality and Efficiency Solutions

To help meet demanding outage schedules and stay within lean operation and maintenance budgets, Structural Integrity Associates, Inc. (SI) has implemented several new field data collection and analysis tools that enable delivery of a higher-quality final inspection product in a more efficient manner. These include customized software tools for streamlining the NDE data acquisition, analysis, and reporting processes. Moving forward, these tools will reduce time-on-pipe for inspections, as well as the associated analysis and reporting time.

For large inspection scopes, collecting, tagging, managing, transferring, and documenting data can be a very labor-intensive process with opportunities for human performance errors. While inspection instruments and analysis software typically have built-in reporting capabilities, these tend to be very general so they can be applied to a wide variety of applications. This can make it cumbersome to tailor these features to a specific application.

READ MORE

 

News & View, Volume 47 | Surface Preparation – A Pivotal Step in the Inspection Process

News & View, Volume 47 | Surface Preparation – A Pivotal Step in the Inspection Process

By:  Ben Ruchte, Steve Gressler, and Clark McDonaldNews & View, Volume 47 | Surface Preparation – A Pivotal Step in the Inspection Process

Properly inspecting plant piping and components for service damage is an integral part of proper asset management.  High energy systems constructed in accordance with ASME codes require appropriate inspections that are based on established industry practices, such as implementation of complimentary and non-destructive examination (NDE) methods that are best suited for detecting the types of damage expected within the system.  In any instance where NDE is used to target service damage, it is desirable to perform high quality inspections while at the same time optimizing inspection efficiency in light of the need to return the unit to service.  This concept is universally applicable to high energy piping, tubing, headers, valves, turbines, and various other power and industrial systems and components.

READ MORE

News & View, Volume 46 | Application of Probabilistic Flaw Tolerance Evaluation Optimizing NDE Inspection Requirements

News & Views, Volume 46 | Application of Probabilistic Flaw Tolerance Evaluation Optimizing NDE Inspection Requirements

By:  Christopher Lohse

News & View, Volume 46 | Application of Probabilistic Flaw Tolerance Evaluation Optimizing NDE Inspection RequirementsThere have been several industry initiatives to support optimization of examination requirements for various items/components (both Class 1 and Class 2 components) in lieu of the requirements in the ASME Code, Section XI.  The ultimate objective of these initiatives is to optimize the examination requirements (through examination frequency reduction, examination scope reduction, or both) while maintaining safe and reliable plant operation.  There are various examples of examination optimization for both boiling water reactors (BWRs) and pressurized water reactors (PWRs).  Each of these technical bases for examination optimization relies on a combination of items.  The prior technical bases have relied on: (1) operating experience and prior examination results as well as (2) some form of deterministic and/or probabilistic fracture mechanics.   For BWRs, the two main technical bases that are used are BWRVIP-05 and BWRVIP-108.  These technical bases provide the justification for scope reduction for RPV circumferential welds, nozzle-to-shell welds, and nozzle inner radius sections.  For PWRs, the main technical basis for RPV welds is WCAP-16168.  These technical bases are for the RPV welds of BWRs and PWRs which represent just a small subset of the examinations required by the ASME Code, Section XI.  Therefore, the industry is evaluating whether technical bases can be optimized for other components requiring examinations. 

READ MORE

News & View, Volume 46 | Multi-discipline Solution for Pressure Vessel Asset Management

News & Views, Volume 46 | Multi-discipline Solution for Pressure Vessel Asset Management

By:  David Segletes and Dan Peters

One of the strengths of the Structural Integrity Associates (SI) team lies in the diversity of the skills and capabilities in the organization. Sure, SI can perform inspection, analysis, design, metallurgy, failure investigations, risk assessments, and project management, but one of the real values of working with SI is when all of those aspects are brought together to solve an issue.

News & View, Volume 46 | Multi-discipline Solution for Pressure Vessel Asset ManagementRecently, a client approached SI after finding a through-wall flaw in an autoclave at the head-to-shell weld as indicated by a visible dye liquid penetrant examination (Figure 1). The autoclave was one of eight similar vessels used for processing the client’s product. Three of the autoclaves are identical in construction to the flawed autoclave and operate with similar process conditions. Remote visual examination by the client indicated that all four autoclaves had similar observations at the inside of the head-to-shell weld, but only one was leaking. The remaining four autoclaves are smaller and are used infrequently. The initial call from the client was for SI to provide emergent support for inspection of the three autoclaves identical to the leaking one to meet production demands. SI responded quickly and examined all four autoclaves using a manual phased array ultra-sonic technique (PAUT) from the exterior of the vessel. The manual PAUT examination provided excellent coverage of the weld region and visualization of the through wall flaw (Figure 2).

READ MORE

News & View, Volume 46 | Turnkey Rapid-Response Plant Support Disposition of Wall Thinning in Standby Service Water Piping

News & Views, Volume 46 | Turnkey Rapid-Response Plant Support Disposition of Wall Thinning in Standby Service Water Piping

By:  Jason Van Velsor, Roger Royer, and Eric Houston

News & View, Volume 46 | Turnkey Rapid-Response Plant Support Disposition of Wall Thinning in Standby Service Water PipingStructural Integrity recently had the opportunity to support a client’s emergent needs when their Standby Service Water (SSW) piping system experienced a pinhole leak just downstream of a valve. Concerned about other locations in the piping system with similar configurations, the site asked SI to assist with the expedited development of assessment and disposition plans for these other components. In response, SI was able to lean on our core competencies in failure analysis, advanced NDE inspection, and flaw evaluation to develop and deploy a comprehensive solution that met our client’s expedited timeline and helped them to mitigate the threat of future unplanned outages. The following sections outline how SI utilized our in-depth knowledge, cutting-edge technology, and world-class engineering to meet our client’s needs.

READ MORE

News & View, Volume 46 | Strategies, Projects and Technologies to Help Improve NDE Reliability in the Pipeline Industry

News & Views, Volume 46 | Strategies, Projects and Technologies to Help Improve NDE Reliability in the Pipeline Industry

By: Scott Riccardella, Jason Van Velsor, and Roger Royer

News & View, Volume 46 | Strategies, Projects and Technologies to Help Improve NDE Reliability in the Pipeline Industry

Pipeline operators face a multitude of threats, including service, environmental, or operational induced degradation to pipelines and related facilities. Non-Destructive Examination (NDE) is often used to characterize the nature and extent of this degradation. Thus, there is a critical need for reliable NDE as pipeline operators rely extensively on NDE as the basis for validating In-Line Inspection (ILI) results, determining fitness for service, and making repair and other operational decisions. Erroneous or inaccurate characterization of these defects can lead to unexpected leaks or failures, unnecessary and costly repairs, the establishment of an incorrect remaining life or re-assessment interval, and inaccurate (in)validation of ILI results.

READ MORE

News & View, Volume 46 | The Newest Phased Array Ultrasonic Technique- Full Matrix Capture

News & Views, Volume 46 | The Newest Phased Array Ultrasonic Technique: Full Matrix Capture

By: Jeff Milligan, Steve Gressler, and Allen PorterNews & View, Volume 46 | The Newest Phased Array Ultrasonic Technique- Full Matrix Capture

Full Matrix Capture (FMC) and Total Focusing Method (TFM) have evolved over the past few years into NDE buzz words that warrant explanation and context for their proper and successful application.  Structural Integrity (SI) is well vested and engaged in FMC and actively exploring the use of this technology where it enhances ultrasonic sensitivity and characterization to bring added value to our clients.  An explanation of these technologies and what they mean to the future of ultrasonic inspection follows.

Phased Array Ultrasonic Testing (PAUT) has evolved significantly over the last 20+ years, with improvements and innovations in sensor design, signal processing, and data interpretation; however, the method by which PAUT is applied has remained relatively unchanged: Excite an array of transducer elements with predetermined time delays, called focal laws, and receive resulting reflections with the array of transducer elements,

READ MORE

News & View, Volume 46 | NDE Best Practices for Generator Rotors

News & Views, Volume 46 | NDE Best Practices for Generator Rotors

By: Paul Zayicek News & View, Volume 46 | NDE Best Practices for Generator Rotors

Three factors typically drive inspection intervals of generator rotors:

  1. a timeframe recommended by the insurance carrier or OEM
  2. an engineering evaluation that supports a different inspection interval due to service operation events or existing rotor damage
  3. industry best practices

Drivers from the OEM include issues defined in service bulletins or technical information letters that pertain to the entire fleet or some subset of the population. Intervals based on engineering evaluations can be derived from an identified damage mechanism with the rotor or with a critical component. An engineering evaluation can also provide for extended inspection intervals in situations where the generator has no inherent material issues, has a clean inspection record, and sees limited operational stress such as in a base-load unit.

READ MORE

News & View, Volume 45 | Latitude™ Delivers Highlights from the First Field Deployments

News & Views, Volume 45 | Latitude™ Delivers – Highlights from the First Field Deployments

By:  Jason Van Velsor, Dave Anthony, Joe Agnew, and Michael Lashley

News & View, Volume 45 | Latitude™ Delivers Highlights from the First Field Deployments

Introduction
For the past 2 ½ years, Structural Integrity Associates (SI) has been working diligently to develop, qualify and deliver the nuclear industry’s first-of-a-kind manually acquired encoded phased array UT (PAUT) examination for Section XI dissimilar metal welds (DMWs).  Development of the encoding technology behind this effort, the LATITUDETM non-mechanized encoding system, was completed in 2017, with our application-specific inspection procedure completed and qualified through the industry’s Performance Demonstration Program (PDI) in the Spring of 2018. Now, with much enthusiasm, we are proud to report that we have successfully completed the first field deployments of the LATITUDE technology and DMW procedure during the Fall 2018 outage season.

READ MORE